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Abstract 

Nontopological solitons can be formed during a phase transition in the 
early universe as long as some net charge can be trapped in regions of 
false vacuum. It has been previously suggested that a particle-antiparticle 
asymmetry would provide a source for such trapped charge. We point out 
that, for the model and parameters considered, statistical fluctuations 
provide a much larger concentration of charge, and are therefore, the 
dominant source of charge fluctuations in solitogenesis. 

(bASb-CR-185351) SZA2ISTICAL FLUCPUATIGIS  N84-256eG 
AS THE O E I G l l f  O F  I C B P C E C L C G I C A I  Z C L I T O l S  
(Eermi Eational Iccelcrator I c k . )  13 p 

CSCL 2otf Unclas 
(23172 02 17250 

Operated by Universities Research Association Inc. under contract with the United States Department of Energy 

~ 
~~~ ~- 



I. INTRODUCTION 

Nontopological soliton solutions in classical field theories have appeared in many 

forms since they were first introduced by Rosen’ and by Friedberg, Lee, and Sirlin.’ 

Examples include Q balls, quark nuggets,‘ cosmic neutrino balls, and soliton stars.e 

The simplest nontopological soliton (NTS) solution involves a real scalar field, Q, 

and a complex scalar field, 4, with Lagrangian7 

L =  

W4l,a) = 

where the constant 

1 ap4(ap4>’ + fpaa’Q - U(l41,Q) 

(1) 
A1 A2  
-(Q’ - Q:)’ + h1412(~ - go)’ + -(Q - Q O ) ~ Q ~  + A, 
8 3 

A is adjusted to give U(0 ,a )  = 0 at the global minimum of the 

potential. The classical potential for Q has two local minima. At the global miminum 

(Q = Q- = -[(l + 2A2/&)/2 + [(l + 2X’/Al)’ + 8A2/A1]’/’/2]uo) the 4 field has a 

mass rn; = h ( ~ -  - while at the local minimum (Q = 6 0 )  the field 4 is massless. 

The nontopological solition solution describes a configuration of massless (b particles 

trapped inside a region with u = ao, separated from the true vacuum Q = CT- by a 

wall of thickness - a;’. The energy of the NTS configuration is8 

E x - TQ + 7 A R 3  4 + O(R’A:’’QO), R 

where Q = IN4 - NFI is the “charge” contained in the spherical NTS of radius R, and 

A is given by A = -&(a! - t7:)’/8 - A2(a- - b 0 ) ~ Q o / 3 .  The three terms in Eq.(2) 

represent the kinetic energy of the confined massless q5 field, the false vacuum energy 

of the NTS, and the surface energy of the wall separating the interior NTS region 

from the true vacuum. We will ignore the wall contribution in our analysis. 

Minimizing the energy of the NTS configuration results in an NTS of mass and 

radius M = (47r/3)4Q3/‘A1/‘ and R = (Q/4A)’l4. This mass should be compared 
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to the mass of Q free 4’s in the true vacuum, Mkee = Qm4 = Qh’/21a- - 801. The 

NTS configuration will have a lower mass, and hence be stable, for charge Q greater 

than some minimum charge, given by 

1231 A ’ em=- ha (c- - rO)*’ (3) 

~ 

In this paper we will study in detail the case A a / A i  = 0.15. For this choice of A * / A I ,  

A = O.6Ala;, Q M ~  = 18Al/h2, and M m  = 46(X1/h3/a)~~.  

A scenario for the cosmological origin of NTS was proposed by Freeman, Gelmini, 

Gleiser, and Kolb’ (hereafter, FGGK). In the FGGK scenario, there is a critical 

temperature, Tc z 2 ~ 0 ,  below which the Universe divides into domains of true (C = 

a_) and false (C = c0) vacuum. The characteristic size of these domains is determined 

by the correlation length, (, of the Q field at the transition. At high temperatures 

thermal fluctuations can cause a correlation volume to make the transition between 

the two minima. These fluctuations freeze out at the “Ginzburg” temperature, TG. 

FGGK estimate TG by the criterion that T G  is equal the maximum free energy of the 

I correlation volume in the transition Z’M = UMI$ (UM is the maximum value of the 
I 

potential in the region C- 5 c 5 g o ) .  For X 2 / &  = 0.15, TG = 1.300/x:/’. Of course 

TG can never be larger than Tc N 2 ~ 0 .  

I At TG, the probabilities of being in the false vacuum, ~ ( c O ) ,  and true vacuum, 

p ( c - ) ,  are Boltzmann distributed according to the difference in free energies of a 

correlation volume in the different minima 

- exp[-AF/Tc] = exp[-AQ/Tc] m- 
(recall that u ( ~ , )  G 0 by the addition of A).  - - p ( ~ o ) / p ( ~ - )  : 

(4) 

then only finite 

regions of “false” vacuum will be populated. If the regions of false vacuum contain a 
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net charge Q E IN& - NTI > Q m ,  true false vacuum regions can be stabilized and 

evolve to  nontopological solitons. 

The probability that a false vacuum region contains a charge Q > Q m  is the 

subject of this paper. 

11. CHARGE FLUCTUATIONS 

FGGK assumed that the net charge in a region was proportional to  a cosmic asymme- 

try, like baryon number, between I$ and 4. This cosmic asymmetry can be expressed 

in terms of an asymmetry parameter 7: 

In this paper we demonstrate that if 7 5 0.5, Poisson fluctuations will dominate the 

probability distribution, and the number density of NTS’s produced will be indepen- 

dent of 7, even in the limit 7 -+ 0. 

We will denote by Fd, the mean number of 4’s in some volume. The proba- 

bility of finding the actual number N+ of 4’s is Poisson distributed: P ( N + ; N + )  = 

e - N # R P / N + ! .  In the limit of large F d ,  the distribution will be Gaussian, with mean 

and variance p = ua = Nd: 

- 

We will later discuss the validity of the Gaussian approximation. An expression 

similar to Eq.(6) obtains for the probability of finding a number Ng of 3’s if the mean 

is p p  The total number, N, and charge, Q, defined as 
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- - 
will also be Gaussian distributed; with means = 1x4 - NqI = qN; 
and variance c2 = r. Therefore, the probability of finding a charge Q in a volume 

containing a mean number r of (4 + 3) 's  isg 

= r d  + r q ,  

As described by FGGK, below TG the Universe divides into cells of correlation 

volume V, N (47r/3)t3. Adjacent cells of false vacuum form "clusters" with density 

per unit cluster of 

(9) 
-1.5 --ET f ( r )  = br e 

for volume V = T V ~ .  The constants b and c are unknown. Scaling arguments imply 

that c -P 0 as p ( ~ )  + p ,  (where pc  is the critical probability for percolation, p ,  - 1/3) 
and b + 0 as p ( c g )  + 0. It is expected that b and c are of order unity otherwise. The 

number density of r-clusters produced in the transition is simply n ( r )  = f(~)%-'. In 

a volume V = T Q ,  the mean number of (4 + 4 ) ' s  is r = T N ~ ,  where rt is the mean 

number of (4 + 4 ) ' s  in a correlation volume 

The number density of false-vacuum domains with charge Q is simply given by 

nQ = C,"=,n(r)P(Q;r = r x t ) ,  where n ( r )  = f(r)%-' as before, with f ( r )  given by 

Eq.(9). Approximating the sum over T by an integral," n g  becomes 

where Kl(z) is a modified Bessel function of the second kind of order one. For large 

argument, the expansion K1(z) -+ e-L ,/7r/2z givedo 

-1/2 

Q 3 / 2  
QnQ = b-(q2 N t  + 2c/rt) i /4  exp [QT - Q($ + ~ C / T ~ ) ' / ~ ]  . 
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The expression for V ( ~ Q  can easily be converted into the ratio of the number 

density of Q’s  to the entropy density, 8 = 27r2g,T3/45. Using ( = ATITcl, the 

correlation volume is V, = 47rt3/3 = 47r/3A:T:. Assuming the 9’s are relativistic at 

T = TG, ng x nz = <(3)T;/7r2, and at T = TG 

Since V, = 87r3g./135A:s, 

There are two interesting limits of Eq.(13). In the limits qa << 1.96X:c, and 

qa >> 1.96X:c, YQ becomes 

(14) 
( 0.64bX;/‘/g,Q3/’) exp( - 1.4QA~/’c1/’) qa << 1.96X:c 

yQ = { (0.54bX:/2171/a/9,Q3/2) exp( -0.98XiQq-’) 17’ >> 1.96X:c 

Since YQ decreases exponentially with Q, the most abundant NTS will be the one 

with the smallest allowed charge, Q = Q ~ N .  

Note that in the “large” 17 limit, we essentially recover the results of FGGK. How- 

ever, this case is only relevant for 7 larger than of order unity. A much more likely pos- 

sibility is that the “small” 7 limit is the relevant one, and that YQ - 10-3Q&?e-QmN. 

111. NUMERICAL RESULTS AND CONCLUSIONS 

In the previous section, three approximations were used: 1) Gaussian rather than 

Poisson statistics, 2) the sum over r-clusters was replaced by an integral, and 3) 
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the large-z expansion of the Bessel function Kl(t)  was used. In this conclusion 

section we present some numerical result and discuss the range of validity of the 

above approximations. 

Clearly for "large" Q ,  Q 2 10-20, Gaussian statistics will be a good approxima- 

tion. In Fig. 1 we compare an integration over T of Gaussian statistics, Eq.(lO), to the 

more accurate sum over T of Poisson statistics. The Gaussian results are presented 

for g =0, 0.25 and 0.5, while the Poisson results are given for g = 0 only. It is clear 

that the Gaussian approximation is an adequate one. Integration over T rather than 

summing also introduces only a small error. 

In Fig. 2 we present the large-t expansion of the Bessel function in Eq.(ll) .  Com- 

parison of Fig. 1 and Fig. 2 shows that for &QNc (7 N t / 2  + c)'12 2 2, the 

expansion is accurate. In Fig. 2 we also show for comparison the results of FGGK for 

~ Q Q .  Clearly it is a serious underestimate for TLQ unless g2 > 1.96X;c. 

--1/2 2- 

We conclude by illustrating the importance of the calculation of YQ. We use the 

example discussed in the introduction, A 2  = 0.15x1, which gives QMIN = 18A1/h2, and 

M ( Q M I N )  = 46Xl~7o/h~/~  = 2 .5Q~mh' /~ao .  Assuming that the contribution to R from 

NTSs is dominated by those with Q = QMIN, Y N T ~  21 10-3QL2e-QM", the present 

NTS energy density is PNTS = YNTSMNTSSO, where so is the present entropy density, 

80 =2800 ~ r n - ~ .  Comparison of p ~ ~ s  to the critical density, p c = 1 . 8 8 ~ 1 0 - ~ ~ h i g  ~ m - ~ ,  

where ho is the Hubble constant in units of 100 km s-l Mpc-', gives 

For NTSs to be dynamically relevant today, RNTshX should be in the range lo-' 5 

O N T S h i  5 1. Relevant values of Q M ~ ,  or equivalently Allha, are shown in Table I. 

The conclusion of this paper is that statistical fluctuations are the dominant source 

of charge fluctuations in solitogenesis, not a cosmic asymmetry as assumed by FGGK. 
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The resulting 0 ~ ~ s  is independent of 7, so long as 7 5 0.1. Finally, reasonable values 

of Q m  give ~ N T S  in a dynamically interesting range. 

ACKNOWLEDGEMENTS 

This work was supported in part by the DOE and NASA (grant NAGW-1340). EWK 

would like to thank Alex Szalay for his hospitality at Eotvgs University where this 

was written. 

TABLE I 

I uo = 10"GeV I uo =1 GeV 
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FIGURE CAPTIONS 

Figure 1: A comparison of Poisson (Footnote 9) and Gaussian probabilities (Eq. 10) 

as a function of Q. = b = c = 1 was assumed. 

Figure 2: The result of the large-z expansion of the Bessel function in Eq. 11 is shown 

by the points marked This Work. Comparison of these points with the corresponding 

points in Fig. 1 shows that the large-t expansion is a good approximation. Also indi- 

cated by the points marked FGGK are the results of FGGK' which ignored statistical 

fluctuations. 
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